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Identifying high-risk adult AML patients: epigenetic and genetic risk factors
and their implications for therapy
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ABSTRACT
Acute myeloid leukemia (AML) is a heterogeneous disease at molecular level, in response to therapy
and prognosis. The molecular landscape of AML is evolving with new technologies revealing complex
panorama of genetic abnormalities where genomic instability and aberrations of epigenetic regulators
play a key role in pathogenesis. The characterization of AML diversity has led to development of new
personalized therapeutic strategies to improve outcome of the patients.
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Introduction

Acute myeloid leukemias (AMLs) are the most frequent acute
leukemias in adult patients. They constitute a heterogeneous
group of hematopoietic malignancies with distinct cytoge-
netic, molecular, epigenetic, phenotypic, and morphological
features [1]. In addition to the diversity of the biological
aspects, these malignancies display variable responses to
treatment [2].

AML is characterized by recurrent genetic alterations, includ-
ing amplifications, deletions, rearrangements, and mutations
[3]. Molecular abnormalities, in AML, have been studied using
cytogenetics since decades. Therapeutic choices are usually
determined by cytogenetic profiles allowing the identification
of different subgroups of patients (favorable, intermediate, and
unfavorable) [4]. On the basis of these karyotype stratification,
patients with relatively good outcomes will receive conven-
tional chemotherapy, whereas patients classified within unfa-
vorable groups will be treated by allogeneic transplantation-
based regimens [5]. However, the majority of patients have an
intermediate cytogenetic risk, commonly a normal cytogenetic
(CN-AML), with patients responding to chemotherapeutic
consolidation and others with a very poor prognosis. A better
stratification within the intermediate-risk group allowed by the
description of recurrent mutations in Fms-like tyrosine kinase 3
(FLT3), Nucleoplasmin family member 1 (NPM1), CCAAT/
enhancer-binding protein alpha (CEBPA), tet methylcytosine
dioxygenase 2 (TET2), DNA (Cytosine-5-)-Methyltransferase 3
Alpha (DNMT3A), and isocitrate dehydrogenase 1/2 (IDH1/2)
has been described using sequencing strategies [6].

Despite treatments, relapse is unfortunately frequent and is
linked to the emergence of a clonal complexity during progres-
sion. The global outcome of AML patients remains poor, with
the exception of acute promyelocytic leukemia (APL), which is
characterized by a remission in about 75% of cases [7].

Innovative genomic technologies, with next-generation or
whole-sequencing approaches, have provided the description
of new molecular abnormalities including new recurrent muta-
tions, at the coding, noncoding RNA, and epigenetic levels.
These data will lead to a better understanding of AML patho-
genesis and progression, to an alternative stratification of AML
patients and to the perspective of a better clinical manage-
ment using novel targeted strategies.

Classical diagnosis and prognostic markers

Recurrent karyotypic alterations and their molecular counter-
parts have been identified as diagnosis markers with prognostic
significance for the last three decades. They constitute the basis
of the definition of AML in the WHO classification of hematolo-
gical malignancies, underlying their impact in the patient man-
agement. The cytogenetic classification of AML is important for
risk-adapted therapy of patients. According to cytogenetics,
patients could be classified in ‘favorable’, ‘intermediate risk’,
and ‘adverse risk’ [4] (Table 1). Two major classifications are
used to classify AML patients in prognostic subsets: the United
Kingdom Medical Research Council (MRC-C) and the European
Leukemia Net (ELN-C) [2,8]. Patients with favorable prognosis
include APL with t(15;17), AML with t(8;21) or inv(16). Those
with adverse prognosis include patients with 11q23 abnormal-
ities excluding t(9;11), t(11;19), and t(9;22), abnormal 3q, complex
karyotype, −17/abn(17p), −5, del(5q), −7, del(7q), t(6;11), t(10;11),
t(6;9), andmonosomal karyotype [2,4,9]. Monosomal karyotype is
defined by the presence of one monosomy and one additional
structure aberration or monosomy and was described as an
adverse prognosis factor independent of complex cytogenetic
abnormalities [10–14]. The beneficial effect of allogeneic hema-
topoietic stem cell transplantation in patients with monosomal
karyotype was reported to be marginal [10,13]. The prognostic
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impact of monosomal karyotype was confirmed in secondary
AML [15] and elderly patients [16].

Nevertheless, up to 45% of all AML patients have a normal
karyotype and the majority of patients fall into an intermediate
group risk category, making cytogenetics alone limited to accu-
rately assess prognosis for all AML patients.

The ELN-C classification includes the prognostic value of
somatic mutations in AML including NPM1, FLT3, and CEBPA.
ELN-C classifies AML into four prognostic categories: favorable
(t(8;21)(q22;q22); inv(16)/t(16;16)(p13;q22); NMP1(+) and FLT3
internal tandem duplication (ITD) WT with normal karyotype;
mutated CEBPA with normal karyotype), intermediate-1 (NPM1
(+) and FLT3 ITD(+) with normal karyotype; NPM1WT and FLT3
ITD(+) with normal karyotype; NPM1WT and FLT3 ITD(+) with
normal karyotype), intermediate-2 (t(9;11)(p22;q23) and cytoge-
netic abnormalities not classified as favorable or adverse) and
adverse (inv(3)/t(3;3)(q21;q26); t(6;9)(p23,q34); t(v;11)(v;23) MLL
rearranged and −5 or del(5q), −7, abnormal (17p), complex
karyotype)[2,6,20].

Genomic instability in AML: link with pathogenesis,
prognosis, and drug resistance

Recurrent nonrandom chromosomal translocations result in
generation of chimeric oncoproteins that are found in 30%
of AML patients. Complex karyotype AMLs are defined by
three or more cytogenetic abnormalities and represent 20%
and 10% of AML cases [5,21].

Biological analyses of fusion proteins provided significant
improvements in the molecular mechanisms involved in leu-
kemogenesis and led to potent therapeutic strategies includ-
ing arsenic trioxide and all-trans-retinoic acid for t(15;17)
patients characterized by the promyelocytic leukemia (PML)-
retinoic acid receptor alpha (RARA) fusion [22,23].

Recently, specific recurrent chromosomal translocations,
including PML-RARA and AML1-ETO, have been associated
with DNA repair deficiencies. Several studies have shown
that AML1-ETO represses DDR (DNA damage response) genes
and especially genes involved in base excision repair (BER)
including OGG1, FEN1, MPG, POLD2, POLD3, POLE, and ATM

[24–26]. This may be involved in DNA damage accumulation in
AML1-ETO AML cells. PML-RARA defines a genetically and clini-
cally distinct AML subtype named APL. Studies indicated that
PML-RARA could repress DDR genes, such as BER genes (FEN1,
LIG3, MPG, OGG1, POLD2, POLD3, and POLE), homologous
recombination repair (HR) genes (RPA1, RECQL4, RECQL5,
BRCA1, and RAD51C), mismatch repair (MMR) genes (MSH6
and MLH1), and nonhomologous end joining (NHEJ) genes
(ku80 and DNA-PK) [24,27]. PML is critical for formation of
nuclear bodies performing important functions in DNA repair
[28–30]. Colocalization of PML and BLM in nuclear bodies has
been shown [30]. In APL cells, PML and BLM are delocalized
from the nuclear bodies into microspeckled nuclear regions
[30]. PML-depleted cells are characterized by a significant
increase in sister chromatid exchanges and genomic instability
characteristics similar to Fanconi anemia and Bloom’s syn-
dromes predisposed to cancers including AML [31,32]. ATRA
treatment of APL patients leads to degradation of PML-RARA
and relocalization of BLM to nuclear bodies [30], suggesting
that PML-RARA are involved in genomic instability in APL
through disruption of BLM and PML localization and activity.

AMLs with a complex karyotype are associated with a poor
prognosis. This subgroup is characterized by increased expres-
sion of DNA repair and cell cycle checkpoint genes including
RAD1, RAD9, RAD21, and MSH6 that could be involved in
chemoresistance [33]. Furthermore, this subgroup was also
distinguished by high level of genomic instability and replica-
tion stress identified by γH2AX and CHK1 staining [34]. DDR
activation in these patients may explain the chemoresistance
and represent a potent therapeutic target for synthetic leth-
ality approaches [34].

Furthermore, single-nucleotide polymorphisms or muta-
tions in genes belonging to HR, BER, nucleotide excision repair
(NER), and MMR pathways have been associated with leuke-
mia susceptibility [35].

Polymorphic variants of genes involved in NER have been
described in AML patients including XPD Lys751Gln, XPC
Ala499Val, and XPA UTR 5ʹA>G. XPD Lys751Gln was described to
be associated with increased risk of t-AML development but not
de novo AML [36–38]. Furthermore, XPD Lys751Gln could be an
adverse prognostic factor in elderly patients [37]. XPD Lys751Gln
combined with XPC Ala499Val polymorphisms are linked with a
poor prognosis in AML patients [38]. XPA UTR 5ʹA>G was also
reported to be associated with drug resistance and shorter over-
all survival (OS) in AML [39]. Several studies reported a correlation
between the presence of polymorphic mutations of RAD51-
G135C with increased risk of t-AML [36,40]. This RAD51 variant
results in RAD51 upregulation [41]. High RAD51 levels could be
associated with an increased susceptibility of cancer cells to
survive to replication stress and chemotherapy [42].
Furthermore, the increased risk of t-AML was shown to be higher
when RAD51-G135C is merged with XRCC3-Thr241Met poly-
morphic variant [40]. This polymorphism combination has been
also linked with an increased risk of de novo AML development
[40,43]. Two polymorphic variants of XRCC1 (XRCC1 Arg399Gln
and XRCC1 Arg194Trp) have also been described in AML patients
[44] without a clear association with risk of AML [45]. A reduced
DNA repair capacity has been described for these polymorph-
isms [46]. Therefore, these variants are associated with a

Table 1. Prognostic subgroups of acute myeloid leukemia based in cytogenetics.

Risk status Cytogenetics

Favorable t(15;17)(q22;q21)
t(8;21)(q22;q22)
inv(16)(p13q22)/t(16;16)(p13;q22)

Intermediate Normal cytogenetics
+8
t(3;5)
t(9;11)(p22;q23)
Entities not classified as favorable or adverse

Adverse Complex karyotype
–17/abn(17p)
abn(3q) excluding t(3;5)(q21–25;q31–q35)
inv(3)(q21q26)/t(3;3)(q21;q26)
del(5q), −5, add(5q)
–7, del(7q), add(7q)
t(6;11)(q27;q23)
t(10;11)(p11–13;q23)
11q23 abnormalities excluding t(9;11), t(11;19), and t(9;22)
t(6;9)
Monosomal karyotype

Adapted from [2,8,17–19]; United Kingdom Medical Research Council (MRC-C)
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significant better OS in AML [44]. However, another study did not
found a significant link between XRCC1 polymorphisms and risk
of AML [45].

Microsatellite instability has been reported in 50% of t-AML
[47,48] and in elderly patients [49], suggesting that MMR
defects could be involved in t-AML development. Mutations
or promoter methylation of MSH2 and MLH1, two genes
involved in MMR, have been identified in AML [27,48–51].

Generation of chromosomal translocations has also been
linked to aberrant NHEJ [52–54]. In patients developing t-AML
after topoisomerase II inhibitor treatment (mitoxantrone and
etoposide), microhomologous sequences have been identified
in PML-RARA, MLL, or AML1 oncofusion genes supporting a link
between aberrant NHEJ and chromosomal translocations in
AML [55,56].

Molecular genomics and risk stratification

Next-generation or whole-sequencing approaches have
revealed several recurrent somatic mutations that allow to
progress in the understanding of AML genomic landscape [1].
AML genomes were reported to present a limited number of
mutations with an average of 13 mutated genes per patient [1].
The most frequently mutated genes include FLT3, NPM1,
DNMT3a, IDH1, IDH2, TET2, RUNX1, WT1, p53, NRAS, and CEBPA
[1]. The development of next-generation sequencing in routine
will extend the information on the mutational profile of AML
patients and affect clinical decisions. Several molecular markers
have been reported for AML risk stratification. Gene mutations
such as ITD of the FLT3 gene, mutations in the NPM1 gene,
partial tandem duplication of the MLL gene, RAS mutations,
mutations in the CEBPA gene, and changes in gene expression,
such as overexpression of BAALC, ERG, EVI1, MN1, and CDKN1B,
have been discovered to strongly affect clinical outcome of CN-
AML patients [57,58]. Twenty-four percent of CN-AML patients
show none of the aforementioned mutations, underlining the
biological and clinical heterogeneity of this disease [59].

Mutation of FLT3 receptor is a common event in CN-AML,
occurring in 30% of the patients [60,61]. Also, 20–25% of the
patients have ITD on the juxtamembrane domain, whereas 7%
of the patients present mutations affecting the tyrosine kinase
domain (TKD). These abnormalities are associated with consti-
tutive activation of FLT3 conferring a growth advantage and
playing a role in leukemogenesis [60]. FLT3-ITD mutated AMLs
are associated with a poor prognosis, whereas the prognostic
significance of TKD mutations is less clear [62–66]. In addition,
the allelic ratio of FLT3 mutant allele to wild-type FLT3 allele
was associated with a prognostic value [65,66]. High FLT3-
mutant allelic ratio have been reported to be more sensitive
to FLT3 inhibitor therapy [67].

NPM1 is a nuclear phosphoprotein mutated in 50% of CN-
AML patients and 60% of patients with FLT3-ITD mutations
[59,68]. NPM1 mutations lead to aberrant cytoplasmic localiza-
tion of the protein and confer a favorable prognosis in the
absence of FLT3-ITD mutations [59,62,68,69]. CN-AML with
NPM1 and IDH1 or IDH2 mutations in the absence of FLT3-
ITD mutations are associated with a favorable prognosis [70].
However, patients with FLT3-ITD and NPM1 mutations have a
poor prognosis [59,62,68,69].

The CEBPA is a transcription factor with critical roles in
tissue-specific gene expression and proliferation arrest [71].
Also, 10–18% of CN-AML display loss of function mutation of
CEBPA [72]. Whereas single mutation in CEBPA was not asso-
ciated with a prognostic value, biallelic mutation confers a
favorable prognosis [62,73–76].

Intragenic mutations of RUNX1 (runt-related transcription
factor 1) were reported in 6–26% of AML and were linked with
an adverse prognostic [77,78].

RAS mutations have been identified in 10–25% of AML
patients with a significant enrichment in patients with inv
(16) karyotype[79,80]. RAS mutations were not reported to be
associated with a prognostic value in AML, but these patients
may benefit from postremission consolidation with high-dose
ara-C [79,80].

EVI1 gene encodes a transcription factor with important
role in normal hematopoiesis and leukemogenesis [81]. EVI1
upregulates cell proliferation through the activation of AP1
and by repression of transforming growth factor β [82].
Moreover, high EVI1 blocks differentiation through its interac-
tion with transcription factors essential in hematopoiesis such
GATA1 [83], SPI1 [84], and RUNX1 [85]. The prognostic impact
of EVI1 expression has been a subject of debate since many
years. A study has demonstrated that EVI1 deregulation is a
relatively frequent event in AML, with no predictive impact on
patients’ outcome[86]. On the contrary, other groups showed
that high EVI1 levels predict adverse outcome among inter-
mediate cytogenetic risk AML [87,88]. Brain and acute leuke-
mia cytoplasmic (BAALC), ETS-related gene (ERG), and
meningioma 1 (MN1) overexpression have also been identified
to strongly affect clinical outcome of CN-AML patients [57,58].

The development of high-throughput gene expression pro-
filing (GEP) is of interest to improve risk classification of
patients with CN-AML. By combining supervised and unsuper-
vised data analysis from microarrays, Bullinger et al. [89]
reported a 133-gene signature that split CN-AML patients
into two groups with different outcomes. The prognostic sig-
nificance of this signature was confirmed using an indepen-
dent CN-AML cohort, using Affymetrix U133plus2.0
microarrays [90]. Metzeler et al. identified 66 genes, whose
expression was prognostic for OS, and defined a prognostic
score based on this signature [91]. More recently, starting from
22 genes whose expression is associated with a bad prognosis
on CN-AML, a new GEP-based risk score was reported [30].
This GE-based risk score allowed identifying a high-risk group
of patients (53.4%) in two independent cohorts of CN-AML
patients. GE-based risk score and EVI1 gene expression
remained independent prognostic factors using multivariate
Cox analyses. Combining GE-based risk score with EVI1 gene
expression allowed the identification of three clinically differ-
ent groups of patients in two independent cohorts of CN-AML
patients [88]. Altogether, these studies emphasized the power
of GEP data to predict outcome of CN-AML patients.

Epigenetic landscape of AML

Epigenetics designate modifications of gene expression with-
out alteration of DNA sequences. Epigenetics is characterized
by a wide range of changes that are reversible and orchestrate
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gene expression. Epigenetic modifications include methylation
of DNA cytosine residues and histone modifications and are
critical in the initiation and progression of many cancers [92].
The identification of abnormalities in epigenetic mediators
and epigenetic landscape gives access to the development
of novel targeted therapeutic strategies. Several genes
involved in DNA methylation and histone post-transcriptional
modifications have been reported to be mutated in AML,
including DNMT3A, TET2, EZH2, IDH1, and IDH2 [6,20].

DNMT3A is a DNA methyltransferase family member.
DNMT3A was described as one of the most frequently mutated
genes in AML in independent cohorts of patients. DNMT3A
mutations were identified in 4–22% of adult AML and in 36%
of CN-AML. DNMT3A mutations are enriched in patients with
intermediate-risk karyotype [93]. Furthermore, DNMT3A muta-
tions are associated with an adverse prognosis in AML patients
[93,94]. Different DNMT3A mutations have been identified
including nonsense, frameshift, and missense mutations.
Among them, the most recurrent alteration is a missense
substitution at codon R882 of DNMT3A [93]. In vitro assays
reported a possible loss of methyltransferase activity in AML
cells with R882 mutation [95]. Another study has shown no
significant difference in DNA methylation comparing DNMT3A
wild-type and mutant patients [93]. Furthermore, methylation
analysis using HELP assay failed to identify a clear specific
signature of DNMT3A mutant compared to wild-type
patients [96].

Ten-eleven-translocation gene 2 (TET2) alterations have
been identified in 8–23% of AML patients [70,97,98]. TET2
mutations are enriched in intermediate-risk AML with a fre-
quency of 18–23% [6,99]. TET2 plays a role in conversion of 5-
methylcytosine to 5-hydroxymethylcytosine with a function in
DNA methylation and epigenetic transcription regulation
[100,101]. AML patients harboring TET2 mutations exhibit a
unique methylation signature with a propensity for hyper-
methylation [102]. TET2 depletion in mice results in inhibition
of hematopoietic differentiation [101], suggesting that TET2
mutation in AML could reactivate a stem cell state [101]. The
link between TET2 mutations and prognosis remains uncertain
[103,104]. TET2 mutations can coincide with alterations in
NPM1, RAS, FLT3, CEBPA, and RUNX1, but are exclusive to
mutations in IDH1 and IDH2 [104,105].

EZH2 mutations have also been reported in myeloid malig-
nancies. EZH2, one of the most studied histone-modifying
enzymes, is the catalytic subunit of the polycomb repressive
complex 2 (PRC2) polycomb complex. EZH2 induces transcrip-
tional repression of target genes by trimethylating lysine 27
residue of histone H3 (H3K27me3) [106]. The other members
of PRC2 complex are proteins EED, SUZ12, RbAp46/48, and
AEBP2. EZH2 requires at least EED and SUZ12 to be catalyti-
cally active in vitro, whereas RbAp46/48 and AEBP2 have been
shown to stimulate EZH2 activity [106]. EZH2, EED, or SUZ12
loss-of-function mutation increases hematopoietic stem cells
(HSC) and progenitors self-renewal activity [107]. EZH2 over-
expression in HSCs prevents exhaustion of their long-term
repopulating potential during serial transplantation [108–
110]. EZH2 has been proposed to be a gene preventing stem
cell senescence [108]. EZH2 also affects adult HSC differentia-
tion but not their self-renewal capacity [111–113]. A

correlation between EZH2 overexpression and myeloid malig-
nancy development has also been described [114]. EZH2 is
highly expressed in high-risk myelodysplastic syndrome
(MDS) and in AML arising from preexisting MDS. Indeed,
EZH2 is significantly overexpressed in MDS and AML primary
tumor cells displaying aberrant DNA methylation of the tumor
suppressor p15INK4B gene compared with patients without
p15INK4B methylation [115]. More recently, a model was pro-
posed in which EZH2-inactivating mutations would be part of
cancer stem cells development through the induction of
HOXA9 expression, supporting myeloid progenitor self-
renewal [116]. In MDS, EZH2-inactivating mutations are fre-
quently associated with RUNX1 mutations. In a MDS mouse
model induced by RUNX1 mutation in HSCs, EZH2 loss pro-
motes disease development but decreases its propensity to
evolve to AML [117].

IDH 1 and 2 mutations have been identified in genome-
wide studies of AML [118]. IDH1 and IDH2 are important
players in normal citrate metabolism catalyzing the decar-
boxylation of isocitrate to α-ketoglutarate in the Krebs cycle
[119]. IDH1 and IDH2 mutations have been reported in 15–
33% of AML patients [70,120,121]. IDH1 and IDH2 mutations
are more frequent in intermediate-risk AML, including normal
karyotype AML [120,122]. These mutations are heterozygous
and occur at arginine 132 or 170 in IDH1 and at Arg172 or
Arg140 in IDH2 [118,123–125] conferring to these enzymes a
new function to convert α-ketoglutarate to 2-hydryglutarate
[126,127]. The increase in 2-hydryglutarate production will
interfere with α-ketoglutarate-dependent enzymes including
TET enzymes, Jumonji-C domain-containing histone lysine
demethylases, and prolyl hydroxylases, and affect epigenetic
regulation [119,128,129]. IDH1 or 2 mutated AML display a
specific methylation pattern with global hypermethylation
and aberrant hypermethylation of genes important in mye-
loid differentiation and in leukemogenesis [1,119,130].
Moreover, the increased level of 2-hydryglutarate will lead
to ROS-mediated DNA damages [130,131]. IDH2 R140 muta-
tion was reported to be associated with NPM1 mutations and
a favorable prognosis in one study [70]. The prognostic
impact of IDH1 or IDH2 mutations is not clear with conflicting
results from different studies [70,120,124].

Therapeutic approaches emerging from new
molecular markers

There is an ardent activity in the development of novel ther-
apeutic approaches for AML. Identification of recurrent muta-
tions in AML has led to development of targeted treatments
(Table 2). RAS mutations have been shown to be associated to
PI3K-AKT and MAPK pathways upregulation [79]. Dual-path-
way inhibition clinical trial combining Mek and PI3K-AKT inhi-
bitors is in progress (NCT01907815).

Several FLT3 inhibitors are tested in AML, alone or in combi-
nation with chemotherapy. Studies suggest that FLT3 inhibitors
are tolerated [132,133]. However, a higher toxicity was reported
in older patients [134]. Lower intensity therapy combined with
FLT3 inhibitor is investigated in older patients with FLT3-ITD
mutations like sorafenib and azacytidine combination [135].
Treatment with sorafenib did not significantly improved event
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free survival (EFS) or OS of patients with AML [134]. Another trial
in younger patients reported no difference in the complete
remission rate, whereas EFS was significantly improved in sora-
fenib-treated patients [133]. More selective FLT3 inhibitors are
currently evaluated [136–138].

AML is characterized by epigenetics abnormalities. DNA
methyltransferase inhibitors (DNMTi) have shown activity in
AML and represent a valuable option for older patients that
could not benefit from intensive chemotherapy. DNMT3A
mutations are associated with an adverse prognosis in AML
patients [93,94], and an improved response rate to decitabine
treatment was recently reported in patients with DNMT3A
mutations [139]. However, these data should be validated. It
has also been hypothesized that patients with TET2 loss-of-
function mutations, in association with increase in DNA
methylation, could be targeted by DNMTi [140].

IDH1 and IDH2 mutations represent attractive therapeutic
targets. Small molecules to target IDH1/2mutants and demethy-
lating agents are tested in clinical trials [141,142] (clinical trials
NCT02074839 and NCT01915498). Furthermore, BCL-2 inhibition
has been proposed as a synthetic lethal approach in AML
patients with IDH2 mutations [143].

Another emerging target for treatment is aberrant methy-
lation of histone lysines by histone methyltransferases
involved in AML pathogenesis like MLL or EZH2.
Translocations involving MLL will lead to fusion proteins
where MLL retains its DNA-binding activity, loses its histone
3 lysine 4 methyltransferase activity but gains the ability to
recruit DOT1L histone 3 lysine 79 methyltransferase. Studies
have demonstrated the role of DOT1L in pathogenesis of AML
induced by MLL-fusion proteins [1,144]. DOT1L inhibitors are
currently in clinical trials in AML (NCT01684150) [1,144].

Development of synthetic lethality approaches in AML,
exploiting DNA repair defects or addiction, represents another
interesting strategy. AML with complex karyotype being charac-
terized by high genomic instability, CHK1 inhibition was asso-
ciatedwith sensitization of complex karyotype AML cells to Ara-C
treatment in vitro [34,145]. The therapeutic potential to combine
temozolomide with PARP inhibitors (PARPi) has been demon-
strated in vitro in MMR-deficient AML [146–148]. PARPi will block

BER pathway and overcome resistance to temozolomide.
Furthermore, PARPi could also be useful to target the function
of PARP1 in restart of stalled replication forks to sensitize AML
cells to genotoxic agents [149–151]. PARP1 is also involved in
alternative NHEJ involved in chromosomal translocation process,
and combination of PARPi with chemotherapy could represent
an interesting strategy to reduce the risk of secondary AML
[152,153]. Recently, it was shown that DDR gene expression
could be targeted by histone deacetylases inhibitors sensitizing
AML cells to chemotherapeutic agents [154,155].

Specific immunotherapy using anti-CD33 antibody-drug
conjugate gemtuzumab ozogamicin [156]. Several studies ana-
lyzing the combination of gemtuzumab ozogamicin to inten-
sive chemotherapy have been performed [157–160].
Gemtuzumab ozogamicin addition was associated with a sig-
nificant reduced risk of relapse and improved survival espe-
cially in patients with favorable but also intermediate
cytogenetic characteristics [161]. More recently, the expression
of CD200, a protein delivering an immunosuppressive signal,
was described as a poor prognosis factor in AML in association
with other molecular prognostic factors [162]. Interestingly,
CD200 appears as a potent therapeutic target in AML for
antibody-based therapy [162].

Expert commentary

AML is a highly heterogeneous disease with a wide diversity in
molecular alterations explaining why AML treatment remains
challenging. However, advancesmade to progress in the under-
standing of the AML genetic and epigenetic landscape lead to
the emergence of novel treatments to develop tailored thera-
pies and improve patient outcome. Several targets have been
identified, and clinical trials investigating targeted therapies are
ongoing in AML. However, some limitations in the success of
these clinical trials could come from the selection of patients
included in targeted therapy trials. These trials are mainly lim-
ited to patients with relapsed or refractory AML where the
advanced genomic instability of tumor cells and the toxicity
of previous treatments could lead to false negative results.
Extension to younger high-risk newly diagnosed patients and
fit newly diagnosed older patients could improve the results of
this approach. Furthermore, identification of the most efficient
drug combination with chemotherapy based on biological
rationale is also needed. Another requirement is the inclusion
of prospective studies with detailed genomic and epigenetic
profiling specified in advance and performed routinely to dis-
tinguish responder from nonresponder patients. Furthermore,
mutation characterization and identification of aberrant pro-
teins could not always be druggable. Synthetic lethal or RNA
interference screens may help to identify vulnerabilities that
could be exploited through targeted therapies [163]. RNA
screen recently identified the protein bromodomain-containing
4 (Brd4) as being critically required for disease maintenance
[163]. Brd4 inhibitor (JQ1) demonstrated robust antileukemic
activity in vitro and in vivo targeting Myc expression [163].
Interestingly, Brd4 inhibitors were efficient to target AML cell
lines with unfavorable aberrations as well as primary tumor cells
from relapsed/refractory AML patients [163,164]. According to
these data, Brd4 inhibitors are currently in clinical trials in AML

Table 2. Prospective targets in acute myeloid leukemia with prognostic implica-
tions and potential targeted therapies.

Target Prognostic value Potential targeted therapy

FLT3 Unfavorable prognosis for
FLT3-ITD

FLT3 inhibitors: sorafenib,
midostaurin, quizartinib,
crenolanib

RAS No prognostic value Mek inhibitor: trametinib
IDH1 and 2 Not clear with conflicting

results from different
results

AG221 IDH2 inhibitor, AG120
IDH1 inhibitor, ABT-199 BH3-
mimetic

TET2 Remain uncertain DNMTi
DNMT3A Unfavorable prognosis DNMTi
MLL Adverse prognosis DOT1L inhibitor
CD200 Adverse prognosis Anti-CD200 MoAb
CD33 No prognostic value Gemtuzumab ozogamicin, SGN-

33a
MLL or p53 Adverse prognosis BET inhibitors

FLT3: Fms-like tyrosine kinase 3; TET2: tet methylcytosine dioxygenase 2; DNMT: DNA
methyltransferase; IDH1/2: isocitrate dehydrogenase 1/2; MLL: mixed-lineage leu-
kemia; MoAb: Monoclonal antibody; DOT1L: DOT1-like histone H3K79 methyltrans-
ferase; BET: bromodomain and extra terminal protein.
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(NCT01943851 and NCT01713582). Currently, most drug devel-
opment strategies using next-generation sequencing for
patient stratification do not consider clonal heterogeneity and
patterns of temporal acquisition of mutations. A better under-
standing of clonal heterogeneity and clonal evolution will be
important to improve the treatment of AML patients. Treatment
may act as a source of genomic instability with a significant
increase in genomic abnormalities, in AML patients, at relapse
following cytotoxic therapy compared with primary samples
[165]. Development of functional model to study tumor evolu-
tion will have to be integrated to develop efficient therapeutic
strategies [166]. Progresses are needed to understand the biol-
ogy associated with cytotoxic agent response and the DNA
damage pathways involved in the context of the interactions
between tumor cells and the microenvironment to address this
therapeutic challenge.

Five-year view

The increased understanding of the pathophysiology of
AML associated with genetic and epigenetic deregulations,
aberrant signaling responses, and interactions with the
microenvironment might be used to design and implement
targeted strategies with a markedly improved therapeutic
index. These aberrations are constantly evolving due to
several selective pressures induced by molecular alterations,

replicative stress, the microenvironment, and the different
treatments. In the complex scenario of AML progression, it
is essential to recognize the possible pitfalls of continuous
therapy incorporating agents with a known mutagenic
potential. It is important to manage the use of chemother-
apeutic agents with a known mutagenic potential in order
to reduce the risk of generating mutant clones. According
to this, targeted treatment of AML represents a significant
way forward and is aimed at increasing survival rates.
Progress in computational and mathematical models will
help to develop predictive biomarkers to optimize targeted
treatment strategies with the most efficient drug combina-
tion in AML patients.
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