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Multiple myeloma (MM) is the second most common hematological malignancy, characterized by the abnormal accumulation of
plasma cells in the bone marrow. Although the latest treatments, have greatly improved patient survival, a residual subset of cells
remains resistant to therapies and usually causes relapses. Among the factors influencing the resistance of cancer cells, the
"metabolic plasticity" of the tumor and, therefore, its ability to adapt to stress conditions is a mechanism increasingly studied in
recent years in cancer. Although measuring mitochondrial metabolism has been identified as a major factor influencing response
to treatments in several cancers, few studies have been documented in MM. Here, we aim to characterize the metabolic profile of
a panel of 20 Human MM cell lines (HMCLs) representative of the molecular heterogeneity found in MM patients.

Introduction

Materials and methods

GEP-based metabolic score is representative of the metabolic activities in MM cells

CONCLUSION
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Figure 1 : Materials and Methods.
A. Table of human myeloma cell
lines used in the study
representative of the molecular
heterogeneity found in MM
patients. B. Schematic overview of
the two major energy-producing
pathways in the cell : Glycolysis and
mitochondrial oxidative
phosphorylation (Oxphos) with the
mitoStress Assay principle in MM. C.
Detection of the mitochondrial
respiration by measurement of the
Oxygen consumption rate (OCR)
with the Seahorse XF96 Mito stress
kit using the optimal cell seeding
density D. Detection of the glycolytic
activity by measurement of the
Extracellular acidification rate
(ECAR) with the Seahorse XF96 Mito
stress kit using the optimal cell
seeding density
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A. B. C. D. Figure 2 : Heterogeneity of the
metabolic profiles in HMCLs
A. Basal, ATP-linked, Maximal and
Spare OCR are heterogeneous in the
20 HMCLs. B. Basal ECAR as well
glycolytic capacity are
heterogeneous in the 20 HMCLs . C.
Calculated glycolytic and
mitochondrial ATP-production of the
20 HMCLs. F. Generation of
Metabolic score in the HMCLs based
on 112 genes including 29 glycolytic
genes and 83 Oxphos genes.
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Figure 3 : GEP-based metabolic score is representative of
the metabolic activities in MM cells. A. Correlation
between Glycolytic ATP production rate and the genomic
score. B. HMCLs were classified by the quartile method
into low, intermediate and high score. HMCLs with a
higher metabolic score produce more ATP from glycolysis
than HMCLs with in lower score. C. ECAR representation
of the 5 HMCLs with the higher score compared to the 5
HMCLs with the lower score. D. Correlation between
Mitochondrial ATP production rate and the genomic
score. E. HMCLs were classified by the quartile method
into low, intermediate and high score. HMCLs with a
higher metabolic score produce more ATP from
mitochondria than HMCLs with in lower score. F. OCR
representation of the 5 HMCLs with the higher score
compared to the 5 HMCLs with the lower score. “ns”
present for no significant and *p < 0.05 analyzed by one-
way ANOVA test followed by Tukey's test (means ± SD).
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Figure 5 : High mitochondrial ATP production is associated with
Carfilzomib resistance in MM cells. A. Correlation between
Mitochondrial-ATP production rate and the increased of Carfilzomib
IC50. B. Carfilzomib resistant HMCLs produce more Mitochondrial
ATP than Carfilzomib sensitive and intermediary HMCLs. C. OCR
representation of the most 5 Carfilzomib resistant HMCLs compared
to the most 5 Carfilzomib sensitive HMCLs. *p < 0.05 analyzed by
one-way ANOVA test followed by Tukey's test (means ± SD).

Figure 4 : High metabolic score values are associated with a poor outcome in MM patients. A. Representation of the Metabolic score in the patient from the CoMMpass Cohort
based on 112 genes including 29 glycolytic genes and 83 Oxphos genes. B. Patients of the CoMMpass cohort (n = 674) were ranked according to the increased metabolic score.
The maximum difference in OS was obtained using MaxStat with a cut off -0.07, splitting patients into high-risk (n = 217; red curve) and low-risk (n = 457; green curve) groups.

A.

The metabolic activities were shown very heterogeneous in HMCLs. By integrating the HMCL’s metabolic profiles with their respective transcriptomic data (RNAseq), we defined a metabolomic score to classify the HMCL into different groups
representing of their glycolysis level. First, high significant correlations between the HMCL’s functional metabolic profiles and their calculated metabolic score were identified. Secondly, the gene-based metabolomic score calculated in the MMRF
CoMMpass cohort (newly diagnosed MM patients, n=674) confirmed metabolic heterogeneity in the patient with segregation of the cohort into two groups with a significantly different outcome. Thirdly, significant correlation between a high
mitochondrial ATP production and the resistance to proteasome inhibitor (P = 0.035, n= 13) were observed.
=> Altogether, we demonstrated that metabolomic deregulation could participate in drug resistance in MM. Inhibitors targeting metabolic activities may be of therapeutic interest to overcome drug resistance in MM.

B.

High metabolic score values are associated with a poor outcome in MM patients

High mitochondrial ATP production is associated with Carfilzomib resistance in MM cells


