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The BLM helicase is a new
therapeutic target in multiple
myeloma involved in replication
stress survival and
drug resistance
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Multiple myeloma (MM) is a hematologic cancer characterized by

accumulation of malignant plasma cells in the bone marrow. To date, no

definitive cure exists for MM and resistance to current treatments is one of the

major challenges of this disease. The DNA helicase BLM, whose depletion or

mutation causes the cancer-prone Bloom’s syndrome (BS), is a central factor of

DNA damage repair by homologous recombination (HR) and genomic stability

maintenance. Using independent cohorts of MM patients, we identified that

high expression of BLM is associated with a poor outcome with a significant

enrichment in replication stress signature. We provide evidence that chemical

inhibition of BLM by the small molecule ML216 in HMCLs (human myeloma cell

lines) leads to cell cycle arrest and increases apoptosis, likely by accumulation

of DNA damage. BLM inhibition synergizes with the alkylating agent melphalan

to efficiently inhibit growth and promote cell death in HMCLs. Moreover,

ML216 treatment re-sensitizes melphalan-resistant cell lines to this

conventional therapeutic agent. Altogether, these data suggest that inhibition

of BLM in combination with DNA damaging agents could be of therapeutic

interest in the treatment of MM, especially in those patients with high BLM

expression and/or resistance to melphalan.
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Introduction

Multiple myeloma (MM) is the second most common

hematologic cancer after non-Hodgkin lymphoma. It mainly

affects patients over 70 years of age and to date there is no

definitive treatment. Treatments of choice include a

combination of immunomodulatory drugs, proteasome

inhibitors, DNA damaging agents, and monoclonal antibodies

among others , together with autologous stem cel l

transplantation in transplant-eligible patients [reviewed in (1)].

Although these treatments can extend the life expectancy of the

patients, eventually almost all of them develop resistance to

chemotherapy and relapse. Therefore, MM remains a non-

curable disease with significant morbidity and a median

survival of 10 years for patients eligible to high dose

melphalan (2–5). These facts point at an urgent need of better

and targeted therapeutic approaches for MM patients to reduce

the morbidity and overcome the resistance to current treatments.

At the cellular level, MM is characterized by the

accumulation of malignant plasma cells, called multiple

myeloma cells (MMCs), in the bone marrow (BM). These

MMCs p r e s en t h i gh soma t i c h yp e rmu t a t i on o f

immunoglobulin genes, characteristic aberrant chromosomal

translocations (3, 6, 7), and a strong dependence on BM

microenvironment, which provides survival signals and

mediates drug resistance (8–10). Recent advances in treatment

with the approval of several novel agents and their combinations

have significantly improved patient outcome (11). However,

patients invariably relapse after multiple lines of treatment,

with shortened intervals between relapses, and finally become

resistant to all treatments, resulting in loss of clinical control

over the disease. MM is a genetically and clinically

heterogeneous disease. Genome sequencing studies have

revealed considerable heterogeneity and genomic instability, a

complex mutational landscape and a branching pattern of clonal

evolution (12). Epigenetics has also been shown to play a role in

the disease progression and resistance to treatments, and

deregulation of epigenetic factors, notably of those associated

with DNA methylation, are related to bad prognosis in MM

patients (13–15). In addition, intraclonal heterogeneity adds

more complexity to MM pathophysiology and is most likely

crucial for the progression of the disease and the relapse after

treatment (16–19). In this context, genetic and epigenetic-wide

screens constitute attractive strategies to understand the onset

and development of MM as well as to identify new candidates to

overcome drug resistance.

In our effort to identify new therapeutic targets in MM, we

found that the BLM gene, which encodes the Bloom’s syndrome

(BS) protein BLM, an ATP-dependent 3’-5’ DNA helicase (20–

22), is associated with a poor prognostic value in MM patients.

Moreover, we have recently reported that BLM has a role in the

regulation of cell proliferation and survival during human

normal B to plasma cell (PC) differentiation (23). BLM
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belongs to the highly evolutionary conserved RECQ family of

DNA helicases; four of the five human genes of this family, BLM,

WRN, RECQL4 and RECQL1, are associated with inheritable

premature-aging and cancer-prone diseases (22, 24–26). The

mutations of BLM disrupting its ATPase or helicase activity

cause BS (27), a rare autosomal recessive genetic disorder

characterized by developmental problems, growth retardation,

immunodeficiency, sunlight sensitivity, fertility defects, and

cancer predisposition associated with genomic and

chromosomic instability (28–30). Soon after BS was first

described, it was reported that lymphocytes from BS patients

present a large increase in sister chromatid exchanges, which to

date remains one of the cellular hallmarks of the disease (29, 31,

32). This cellular phenotype is due to the role of BLM in

preventing sister chromatid and homolog chromosome

exchanges during homologous recombination (HR) (33).

Indeed, BS patients present a high sensitivity to DNA

damaging agents commonly used in chemotherapy because the

loss of BLM activity causes deficient DNA repair (34, 35). In

particular, BLM is necessary for normal replication completion

and is involved in several steps of the HR process. First, BLM is

recruited to DNA double strand breaks (DSBs) in a manner

dependent on the presence of NBS1, MRE11 and ATM. ATM

activity is essential only for the early recruitment of BLM,

whereas polyubiquitination of BLM and its subsequent

interaction with NBS1 are required for its retention at DSBs

(35). Then, BLM together with the endonuclease DNA2 is

involved in 5’-end DNA resection during the initiation step of

DSBs repair by HR (21, 36, 37). Later, once DNA synthesis has

been completed across the DNA break, BLM resolves the

Holliday junctions to restore the separated DNA duplexes

(38–40). However, BLM can also have anti-recombinogenic

activity by disrupting the D-loops formed during the strand

invasion step of HR, and other studies have underlined the dual

role of BLM through its pro- and anti-recombinogenic activities

to balance HR and non-homologous end joining (NHEJ) in

order to preserve genome stability (34, 41–45). BLM also

maintains genome stability at stalled replication forks by

promoting fork regression and restart (46–48), resolves mitotic

chromosome bridges (49–51), and participates in telomere

maintenance by resolving G-quadruplexes that can interfere

with telomere replication (52–54).

As most cancers, MM and other hematological malignancies

are also characterized by genomic instability that may arise from

defective DNA replication and repair pathways (55–57). It has

been highlighted that a subgroup of MM patients displays high

chromosomal instability and replication stress which correlate

with poor outcome (58–60). Along this line, we previously

reported the importance of RECQ1 helicase in the survival to

replication stress and drug resistance of MM cells (61, 62). BLM

helicase, which belongs to the same family as RECQ1, is crucial

in the maintenance of chromosomal stability and has been

clearly associated with cancer development in BS patients.
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Here, we report that BLM expression is deregulated in several

MM patient cohorts and that its overexpression is associated

with poor prognosis. A novel BLM inhibitor, ML216, is a small

molecule that inhibits the catalytic activity of BLM more than

other RECQ family helicases (63, 64). ML216 has been used to

characterize BLM function in HR (35), but its potential as an

anti-cancer therapy has barely been addressed and to date no

available studies have evaluated it in the context of MM.

Here, we characterized the importance of BLM for MM

pathophysiology and resistance to treatments as well as the use

of ML216 alone and in combination with current MM

chemotherapies. Using a unique collection of human MM cell

lines (HMCLs) that recapitulate the heterogeneity and

complexity of MM patients (65, 66), we found that different

HMCLs display different sensitivity to BLM inhibition by

ML216. Characterizing the impact of BLM inhibition on MM

plasma cell survival, we found that ML216 induces DNA damage

and apoptosis. Moreover, co-treatment of HMCLs with ML216

and melphalan, a common anti-myeloma drug, has a synergistic

effect leading to increased MMC death. Our results suggest that

BLM inhibition in combination with melphalan could be of

therapeutic interest in the treatment of MM.
Materials and methods

BLM expression analysis and gene set
enrichment analysis

Patients’ MMCs were purified using anti-CD138 MACS

microbeads (Miltenyi Biotec, Bergisch Gladbach, Germany)

and their gene expression profile (GEP) obtained using

Affymetrix U133 plus 2.0 microarrays as described (Array

Express public database [E-MTAB-372]) (67). Publicly

available cohorts of newly-diagnosed MM patients treated with

high dose melphalan and autologous hematopoietic stem cell

transplantation (UAMS-TT2 and TT3 (GSE24080), and Hovon

(GSE19784) cohorts) were also used. Gene expression data were

normalized with the MAS5 algorithm and analyses processed

with GenomicScape (http://www.genomicscape.com) (68). Gene

Set Expression Analysis (GSEA) was used to identify genes and

pathways differentially expressed between populations.

Difference in overall survival between groups of patients was

assayed with a log-rank test and survival curves plotted using the

Kaplan–Meier method (Maxstat R package) (69).
Human myeloma cell lines and
drug treatments

XG1, XG2, XG7, XG12, XG19 and XG21 HMCLs are IL-6

dependent cell lines obtained as previously described (65). Upon

removal of IL-6, these cell lines progressively apoptose within 10
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to 14 days and are routinely maintained in RPMI 1640

GlutaMAX medium (61870044, Gibco) supplemented with

10% fetal calf serum (CVFSVF00 01, Eurobio) and with IL-6

(2 ng/ml) (65). AMO-1, LP1 and OPM2 were purchased from

DSMZ (Braunsweig, Germany) and RPMI8226 from ATCC

(Rockville, MD, USA). These cell lines were grown in RPMI

1640 GlutaMAX medium (61870044, Gibco) supplemented with

10% fetal calf serum (CVFSVF00 01, Eurobio). Melphalan-

resistant XG2 and XG7 cell lines were derived from XG2 and

XG7 parental cell lines after sequential in vitro treatment and

selection (70). HMCLs were authenticated according to their

short tandem repeat profiling and their gene expression profiling

using Affymetrix U133 plus 2.0 microarrays deposited in the

ArrayExpress public database under accession numbers E-

TABM-937 and E-TABM-1088. Whole exome sequencing

analysis was performed on XG2 and XG7 melphalan-resistant

cell lines and the corresponding parental cell lines as previously

reported (66). The WES library preparation was done with 1000

ng of input DNA. Sequences of exome were enriched using

SureSelectxt kit and SureSelectxt All Exons v5 library (Agilent

Technologies, Santa Clara, California, USA). Paired-end exome

sequencing was performed on the enriched exome sequences

using the illumina NextSeq500 sequencing instrument (Helixio,

Clermont-Ferrand, France), generating 75 bp paired-end reads

with 100X average coverage per sample.

Drugs used in this study: ML216 (SML0661, Sigma) and

me lpha l an (Y0001457 , European Pharmacopoe i a

Reference Standard).
Generation of XG2 cells with BLM
knock-down

XG2 cells were transduced with control or BLM miRNA

lentiviral particles. BLM miRNAs (Invitrogen, Carlsbad, USA)

were cloned in the pLenti4-EZ-mIR plasmid (Invitrogen) as

described (61). This plasmid contains the shRNA sequence and

also the GFP gene under the control of Tet operators. Cells were

selected with 12.5 mg/ml of zeocin for 2 weeks. When selection

was completed, cells were maintained in the presence of 6.25 mg/
ml zeocin to keep the selection pressure. Before every

experiment, zeocin was removed from the medium by

extensive washing and cells were plated in zeocin-free fresh

medium. BLM depletion was validated by western blot using

anti-BLM (ab476, Abcam).
Evaluation of ML216 toxicity on primary
multiple myeloma cells

Bone marrow samples from untreated MM patients (n = 7)

were obtained at the University Hospital of Montpellier after

patients’ written informed consent in accordance with the
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Declaration of Helsinki and agreement of the Montpellier

University Hospital Centre for Biological Resources (DC-2008-

417). Bone marrow mononuclear cells are cultured with IL-6

(2ng/ml) (61, 71) seeded at 5x105cells/mL in RPMI 1640

medium, 5% FCS, 2ng/mL IL-6, and cultured with or without

ML216 (3 mM, 6 mM or 10 mM) for 4 days as described (61, 71).

In each culture group, viability and cell count were assayed and

MM cell cytotoxicity was assessed by flow cytometry (61, 71).

MM plasma cells (CD138+) were detected using anti-CD138-

phycoerythrin monoclonal antibody (Immunotech, Marseille,

France) and all CD138- cells were analyzed as non-

myeloma cells.
Proliferation assays and synergy matrixes

For IC50 determination, HMCLs were seeded at 10000 cells/

well and cultured for 4 days in 96-well flat-bottom plates in

presence of ML216 at concentrations ranging from 0.78 mM to

100 mM. Cell proliferation was evaluated using CellTiter-Glo

(CTG) Luminiscent Assay (G7573, Promega) according to

manufacturer’s protocol and luminescence was measured using

a Centro LB 960 luminometer (Berthold Technologies, Bad

Wildbad, Germany). IC50 for each HMCL was calculated

using non-linear regression analysis in GraphPrism software.

For evaluation of ML216 and melphalan synergy,

increasing concentrations of each single drug were combined

with all concentrations of the other drug so all possible

combinations were evaluated. Cell growth was evaluated with

CTG reagent as described above. For each combination, the

percentage of expected growing cells in the case of effect

independence was calculated with Bliss equation using R

package “SynergyFinder”.
Apoptosis and cell cycle analysis

Cells were treated with the indicated concentrations of

ML216 and melphalan for 48 and 96h. Cells were collected,

counted and 105 cells per condition were processed with the

Annexin V kit (556421, BD Biosciences) according to

manufacturer’s instructions. Apoptotic cells (AnnexinV+) were

quantified by flow cytometry.

For cell cycle analysis, cells were cultured and treated as

described above. To mark replicating cells, culture medium was

supplemented with 10 mg/ml BrdU (bromodeoxyuridine) during

the last hour of each treatment and samples were processed with

the APC BrdU flow kit (552598, BD Biosciences) according to

manufacturer’s instructions. Cells cycle phases were analyzed by

flow cytometry. BrdU+ cells were assigned to S-phase and BrdU-

cells were classified as G0/G1 or G2/M phases based on their

DNA content.
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All flow cytometry acquisitions were done on a Fortessa flow

cytometer (BD biosciences) and quantifications were done with

Kaluza software.
Western blot

For comparison of BLM protein levels in HMCLs, cells were

lysed with RIPA buffer (sc-24948, Santa Cruz) supplemented

with halt protease and phosphatase inhibitor cocktail (78442,

Thermo Scientific). Cell extracts were quantified by BCA assay

(23225, Thermo Scientific), absorbance at 570 nm was measured

using a spectrophotometer (Tecan) and a linear regression was

performed to determine protein concentration in each sample.

Typically, 20 mg of protein extract were loaded per sample in 8%

polyacrylamide gels.

For analysis of apoptotic and DDR pathways, 1 million cells

were directly lysed in 300 ml of Laemmli buffer (1x), vortexed,

boiled at 95°C for 5 minutes and 20 ml were loaded per sample in

8%, 10% and 14% polyacrylamide gels.

Antibodies used in this study are: anti-BLM (ab476, Abcam),

anti-WRN (4666, Cell Signaling), anti-RECQ1 (ab22830, Abcam),

anti-RECQL5 (sc-515050, Santa Cruz), anti-Tubulin (2144S, Cell

Signaling), anti-pSer15_p53 (9284S, Cell Signaling), anti-p53

(9282S, Cell Signaling), anti-p21 (2946S, Cell Signaling), anti-p27

(3688S, Cell Signaling), anti-gH2AX (05-636, Millipore), anti-PARP

(9532S, Cell Signaling), anti-pThr68_Chk2 (2197S, Cell Signaling),

anti-Chk2 (2662, Cell Signaling), anti-pSer345_Chk1 (2348S, Cell

Signaling), anti-Chk1 (2345S, Cell Signaling), anti-Caspase 3

(9662S, Cell Signaling), anti-Caspase 8 (9746, Cell Signaling),

anti-Caspase 9 (9502S, Cell Signaling).
Immunofluorescence

Cells were deposited on poly-lysine coated slides (J2800AMNZ,

Thermo Scientific) using a Cytospin 4 centrifuge (Thermo

Scientific) at 600 rpm for 10 minutes. Soluble cell fraction was

pre-extracted by incubation with cold cytoskeleton buffer (CSK: 10

mM PIPES, pH 7, 100 mM NaCl, 300 mM sucrose, 3 mM MgCl2,

0.7% Triton X-100) (2 x 3 minutes), fixed with 4% PFA-PBS, and

saturated with 3% BSA-PBS for 1h at RT. Anti-BLM antibodies

(ab476, Abcam; sc-365753, Santa Cruz) were diluted at 1:200 and

anti-nucleolin (ab22758, Abcam) was diluted at 1:1000 in saturation

buffer and incubated on slides in a humid chamber for 90 minutes.

Slides were washed 3 x 5minutes with PBS-0.01% Tween, incubated

protected from light in a humid chamber with secondary antibody

(A11008, Invitrogen) 1:500 for 45 minutes at RT. Washed again 3 x

5minutes with PBS-0.01% Tween, incubated with DAPI (20 mg/ml)

in H2O for 5 minutes and washed 3 times with H2O. Slides were air

dried and mounted with Prolong Gold (P36930, Invitrogen) and let

to dry overnight. Image acquisition was performed with a ZEISS
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Axio Imager Z1 Apotome microscope and analysis was done with

Omero server.

Results

BLM expression is associated with a poor
outcome in multiple myeloma

We previously reported that BLM gene had a bad prognostic

value in the Heidelberg-Montpellier (HM) MM cohort of

patients (58) and that BLM expression was significantly

upregulated in MM according to bioinformatics analysis of

one publicly available cohort of MM patients with gene

expression dataset (62). Therefore, we further studied BLM in

the pathophysiology of MM and validate our previous

observations with several independent cohorts of patients. No

significant difference in BLM expression between normal bone

marrow plasma cells (BMPCs; n=5; median: 1133; range: 863-

1328) and MMCs from patients (n=206; median: 935; range:

113-5206) was found (Figure 1A). Furthermore, although we did

not observe a statistical difference with BMPCs, BLM mRNA

levels appeared heterogeneous in MMCs ranging from 236 to 3079

in Affymetrix signal (Figure 1A, MMCs outliers marked by *).

However, BLM expression was significantly higher in HMCLs

(n=42; median: 1848; range: 246-10901) when compared to both

normal BMPCs and primary MMCs (P = 0.0001) (Figure 1A and

Supplementary Figure 1A), suggesting an increase in BLM levels

with the progression of the disease. Primary MMCs of untreated

patients can be classified into seven molecular groups associated

with different patient survival (72). According to this classification,

BLM expression was significantly higher in the poor prognosis

“proliferation” subgroup (PR; P < 0.5) and “low bone disease”

subgroup (LB; P < 0.01) (Figure 1B). Finally, we investigated the

BLM expression in a cohort of 18 patients with paired samples at

diagnosis and relapse, and identified a significant higher expression

of BLM at relapse (P=0.04) (Figure 1C).

Using Maxstat R package (69), we determined that high

BLM expression in MMCs could predict shorter overall

survival (OS) in four independent cohorts of previously

untreated patients that were homogenously treated with high

melphalan dose (HDT) followed by autologous stem cell

transplantation (ASCT), a standard-of-care therapy for newly

diagnosed MM (73) (HM cohort (n = 206): P = 0.003; UAMS-

TT2 cohort (n = 250): P = 0.0002; TT3 cohort (n = 158):

P = 0.0008; Hovon cohort (n = 282): P = 0.04) (Figures 2A–C).

A high BLM expression could also predict for shorter event free

survival (EFS) in the HM and TT2 cohorts (Figures 2A, B, right

panels). In a COX multivariate analysis [including ISS, B2M

level, t (4, 14), del17p, Gep70 score (74), IFM score (75),

Growth Proliferation Index (GPI) (67) and RS (76)], BLM

expression, B2M level, t (4, 14) and RS remain independent

prognostic factors (Supplementary Table S1). In addition,
Frontiers in Immunology 05
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FIGURE 1

BLM expression in MM. (A) BLM expression analysis by Affimetrix
microarrays from normal BMPCs from 5 healthy donors (median:
1133; range: 863-1328), MMCs from 206 MM patients from the
HM cohort (median: 935; range: 113-5206), and 42 HMCLs
(median: 1848; range: 246-10901). * marks outliers. Statistical
analysis used a Student’s t-test of paired samples. (B) Gene
expression profiling of MMCs of the patients of UAMS-TT2
cohort were used. Patients (n = 250) were classified in the 7
molecular groups of MM. PR: cell cycle and proliferation, LB: low
bone disease, MSET: MMSET overexpression, HY: hyperdiploid
signature, CDNN1: Cyclin D1 overexpression, CDNN2: Cyclin D2
overexpression, MAF: overexpression of MAF and MAFB genes.
Small asterisks mark outliers in each group. Big red asterisks
indicate that BLM expression is significantly higher in the group
compared to all the patients of the cohort (P < 0.05) (Student’s
t-test). (C) BLM expression is significantly higher at relapse
compared to diagnosis in a longitudinal cohort of 18 paired
patient’s samples (paired Student’s t-test). * p-value < 0.05.
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FIGURE 2

High BLM expression is associated with a poor outcome in MM. Correlation between BLM expression and overall survival was analyzed using
Maxstat R package in independent cohorts of MM patients: including patients at diagnosis treated by HDT and ASCT (A, left panel) HM cohort;
(B, left panel) UAMS-TT2 cohort; (C) TT3 cohort; a cohort of patients at relapse treated by Anti-CD38 antibody (Daratumumab) (D) Mtp cohort
anti-CD38 and a cohort of patients at diagnosis non eligible to HDT and ASCT (E) Mtp cohort non eligible HDT. (A, B, right panels) High
expression of BLM is associated with shorter event free survival in the HM, TT2 and Mtp cohort non eligible HDT cohorts.
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Gene Set Enrichment Analysis (GSEA) showed that patients

with high BLM expression level and high-risk present a

significant enrichment of proliferation-associated genes

(Reactome cell cycle and mitotic: P = 0.01; reactome G1/S

transition: P = 0.01) (Supplementary Figure S1B). However, no

significant correlation between BLM expression and MMC

plasma cell labeling index (77) was found (Supplementary

Figure S1C). Furthermore, no significant difference was

identified comparing GPI subgroups (Supplementary Figure

S2A). BLM expression was significantly higher in high-risk

MM patients defined by RS score (76) (Supplementary Figure

S2A). (High BLM expression was also associated with a poor

outcome in a cohort of MM patients at relapse treated by anti-

CD38 MoAb (78) (Figure 2D) at diagnosis non eligible to HDT

and ASCT (n=63) (Figure 2E). These data indicate that high

BLM expression is associated with poor prognosis in MM

patients and correlates with increased expression of cell cycle

progression genes, even though cells with high BLM expression

do not show increased proliferation.
BLM inhibition in MMCs affects
proliferation and induces apoptosis

ML216 is a small molecule that inhibits BLM DNA

unwinding activity by blocking its nucleic acid binding site.

This inhibitor has been shown to be selective for BLM over other

members of the RECQ family in vivo (63, 64). Hence, the

response to ML216 was tested in a panel of ten HMCLs

representative in part of the molecular heterogeneity of MM

(65). Treatment with this drug inhibited cell proliferation in a

dose-dependent manner with a median IC50 of 2.78 µM (range:

1.2-16.9 µM) (Figure 3A). RNA-seq and western blot analysis

showed marked differences in BLM expression among HMCLs

(Figures 3B, C). However, there was not any correlation between

BLM gene expression or BLM protein levels and HMCLs

sensitivity to ML216. Importantly, BLM was not mutated in

any of these HMCLs according to our sequencing data [data not

shown published in (66)]. The differences in the protein levels of

the RECQ helicases WRN, RECQ1 and RECQL5, and the basal

level of DDR activation were also not correlated with the

sensitivity to ML216 (Figure 3C), thus ruling out that the

effect of the BLM inhibitor on cell proliferation was due to a

non-specific effect on another helicase or a higher level of basal

DNA damage specific to certain cell lines. Additionally, we did

not find any correlation between the sensitivity to the BLM

inhibitor and the MM molecular subgroups (65), nor the

recurrent mutations reported in MM, nor mutations in genes

involved in the DDR (66, 79) (Figure 3D). However, our

sequencing data identified in each cell line mutations in

numerous genes involved in transcription (66). Therefore, it is

possible that deregulation of transcription may have an indirect

impact in the DDR and other molecular pathways, making some
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cells more vulnerable to BLM inhibition than others. In addition,

BLM is involved in other cellular processes other than DNA

repair, such as replication, telomeric maintenance or ribosomal

DNA regulation among others (80), which suggests that

differences in the regulation of these processes may also

account for the differential sensitivity of the cell lines to ML216.

ML216 has been described to exclusively inhibit BLM

unwinding activity without any further impact on its biological

regulation (63, 64). To confirm that this is the case in MM cells,

we analyzed BLM protein levels upon ML216 treatment in the

sensitive cell lines XG2 and XG19. The levels of BLM and the

RECQ helicases WRN, RECQ1 and RECQL5 did not

significantly change after 48h and 96h in presence of ML216

(Supplementary Figure S3A). BLM is a nuclear protein recruited

to chromatin in response to DNA damage. It can form foci and

micro-speckles (81) and also localizes to the nucleolus (82). To

determine the subcellular localization of BLM in HMCLs, XG19

and XG2 cells were treated with ML216 for 48h, soluble proteins

were pre-extracted by cytoskeleton (CSK) buffer prior to fixation

and immunofluorescence detection. Chromatin bound BLM

localized to the nucleolus and nuclear foci in basal conditions

in XG19 and XG2 cells and no significant change was observed

upon ML216 treatment (Figure S3B). Intriguingly, in XG2 cells

ML216 treatment induce a partial relocalisation of nucleolin in

the chromatin, and a conformational change of the nucleoli,

which appeared more elongated (Figure S3B, right), although

BLM remained localized in them. Together, these data indicate

that the chemical inhibition by ML216 does not affect BLM

levels or localization in MM cells, and that the observed

cytotoxicity is likely due to the inhibition of BLM

helicase activity.

In order to study the effect of BLM inhibition on MM cell

survival, one ML216-resistant (XG1; IC50 = 13.2 µM) and two

ML216-sensitive (XG19 IC50 = 1.2 µM; XG2 IC50 = 4.9 µM)

HMCLs were chosen. ML216 induced marked apoptosis at all

doses in the sensitive XG19 and XG2 cell lines already at 48

hours of treatment, whereas this effect was only mild on the

resistant XG1 cell line even at 96 hours (Figure 4A). To confirm

that BLM is also required for the survival of primary MMCs

from patients, BM samples containing malignant MMCs with

their BM environment and recombinant IL-6 were cultured with

ML216 as described (13, 70, 83). ML216 treatment significantly

reduced the median number of viable myeloma cells by more

than 50% (P < 0.001; N = 7) compared to untreated control

(Figure 4B). Of interest, the normal BM non-myeloma cells were

less affected by ML216 treatment at low and mild doses

(Figure 4C). We therefore conclude that viability of MM cell

lines and primary MM cells depends on high BLM

expression levels.

BLM is a DNA helicase that unwinds DNA resulting from

HR-mediated processes occurring during DNA replication and

repair, such as D-loops (34, 41–45) or Holliday junctions (38–

40). Therefore, a higher sensitivity of replicative or post-
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FIGURE 3

Effect of ML216 in HMCLs. (A) 10 HMCLs were treated with increasing doses of ML216 (0.78 – 100 mM). At day 4, cell viability was assessed using
CellTiter-Glo Luminiscent Cell Viability Assay. IC50 for each cell line was calculated using GraphPrism software. Upper panel shows the non-
linear regression curve of growth inhibition for all HMCLs. Low panel shows the IC50 value for each HMCL. Data are based on at least 3
independent experiments. (B) BLM expression and sensitivity to ML216 (IC50) do not correlate after applying a Spearman’s test. (C) Western blot
analysis of the protein level of the RECQ helicases and basal DDR markers in 10 HMCLs. Cell lines are ranked from left to right in order of
increasing IC50 for ML216. Note that in most cell lines protein levels do not correlate with BLM expression levels determined by RNAseq in
Figure 3B. (D) Mutational status of MM frequently mutated genes in the 10 HMCLs used for the other experiments in this figure. “HMCL
classification” refers to the MM molecular group classification. PR (cell cycle and proliferation), LB (low bone disease), MSET (aberrant expression
of FGFR3 and MMSET genes), HY (hyperdiploid signature), CDNN1 (overexpression of Cyclin D1), CDNN2 (overexpression of Cyclin D2), and MAF
(overexpression of MAF and MAFB genes) (72). Data extracted from (66).
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replicative cells to ML216 treatment was predicted. To address this

possibility, we investigated the cell-cycle distribution of HMCLs

treated with ML216 by flow cytometry. In the case of the XG1 cell

line, ML216 induced a decrease in the percentage of cells in S-phase

concomitant with an increase in G0/G1, indicative of a cell cycle

arrest at the G1/S transition (Figure 5), and correlated also with

more Annexin V positive cells (Figure 4A). In the XG19 sensitive

cell line, ML216 treatment caused a decrease in the S-phase

population (Figure 5) that correlated with an increase in the

apoptotic population (Figure 4A) and no change was observed in

the other phases of the cell cycle. In the XG2 cell line, ML216

treatment induced an accumulation in S-phase correlated to a

decrease in the G2/M cell population (Figure 4A).Together, these

data indicate thatML216 prevents entry and progression through S-

phase in myeloma cells, causing an alteration of the cell cycle

distribution. When cell cycle arrest due to ML216 treatment is

sustained over time, apoptosis is triggered in all of the cell lines,

suggesting that permanent inhibition of BLM causes DNA damage

to a level that is lethal for myeloma cells.
ML216-mediated inhibition of BLM
synergizes with melphalan in MM

Various chemotherapeutic drugs are currently used to treat

MM patients, and their rational and combinatorial use has

proven to be a good treatment strategy to improve MM

patient survival [reviewed in (1)]. Since another RECQ

helicase was associated with resistance to genotoxic agents in

MM (61), we next investigated whether ML216 could synergize

with conventional MM treatment including melphalan,

lenalidomide, and bortezomib. No synergy of ML216 with

bortezomib (Supplementary Figure S4A), whereas a synergy

between ML216 and lenalidomide was observed in XG2 and to

a lesser extent in XG19 (Supplementary Figure S4B). However,

ML216 treatment of XG2 did not induce any change in the

protein levels of Myc and IRF4 (84) (Supplementary Figure

S4C), and the molecular mechanism of this potential synergy

remains to be explored. Interestingly, treatment with ML216

mildly potentiated the cytotoxic effect of melphalan in the XG1

and XG2 cell lines (Figure 6), whereas it had no major effect in

the XG19 cell line (Figure 6). Since melphalan generates DNA

damage and BLM is involved in DNA double-strand breaks

(DSBs) resolution, we hypothesized that co-treatment with both

drugs may increase DNA damage above a threshold that

myeloma cells cannot cope with, leading to cell death. Indeed,

combination of ML216 and melphalan induced a significant

increase in apoptosis (Figure 7A), and affected cell cycle

distribution inducing a decrease in the fraction of S-phase cells

and an increase in G0/G1 cells (Figure 7B). As already

mentioned, BLM promotes the HR-mediated repair of DNA

DSBs (21, 36, 37). DSBs are marked by the presence of gH2AX,

resulting from the phosphorylation of the H2AX histone variant
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on Ser139 by the checkpoint apical kinases ATM and ATR (85–

87). Then, MDC1 (mediator of DNA damage checkpoint protein

1) binds to gH2AX and together orchestrate the recruitment of

downstream DNA repair factors such as BRCA1, 53BP1, the

MRN complex or RAD51 among others (88–90). Interestingly,

the effect on cell cycle and cell death of ML216 and melphalan

co-treatment (Figures 7A, B) correlated with an increase in

gH2AX positive cells (Figures 7C, D), indicative of higher

DNA damage levels in the presence of both drugs.

In order to further investigate the molecular mechanism at

the origin of this synergism, we next analyzed the activation of

apoptosis pathways in HMCLs treated with ML216 and

melphalan by western blot. BLM inhibition in combination

with melphalan induced PARP cleavage, a marker of cell death

(91), without significant changes in cell cycle regulators or DDR

factors, such as the phosphorylation of p53, Chk1 and Chk2, and

p21 levels (Figure S4A). In all conditions, Caspases 3/8/9

presented already a low degree of cleavage, which was slightly

increased in the case of Caspase 3 in XG19 and Caspases 3/9 in

XG2 by melphalan and ML216 combination (Figure S4B). Thus,

our data suggest that combination of BLM inhibition with

melphalan induces cell death (Figure 7), likely through DNA

damage accumulation above the cell’s tolerance level.

In order to confirm the specificity of our results with ML216,

we transduced the XG2 cell line with lentivirus containing

specific miRNA to knock-down BLM expression (KD BLM).

We validated the depletion of BLM protein by western blot, and

confirmed that BLM downregulation did not significantly affect

the level of expression of the other RECQ helicases (Figure 8A).

XG2 control and KD BLM cell lines were treated with 1 mM
melphalan for 4 days, and the DDR and caspases activation were

analyzed by western blot. In agreement with our results with

BLM inhibition in the XG2 parental cell line (Figure 7 and

Supplementary Figure S5), the treatment with melphalan

induced DDR activation (Figure 8B) and more PARP and

caspases cleavage (Figure 8C) in KD BLM cells than in control

cells. Moreover, apoptosis level was higher in KD BLM in

response to melphalan (Figure 8D). The treatment with the

alkylating agent also induced an accumulation of cells in S-phase

both in control and KD BLM cells, with small but significant

differences also in the repartition of G0/G1 and G2/M

populations (Figure 8E). These results validate the specificity

of the phenotypes obtained with the chemical inhibition of BLM

with ML216 in combination with melphalan, and strengthen the

notion that BLM activity and levels are important for the

response to DNA damage agents in myeloma cells.

Finally, based on our previous observation of a synergy

between ML216 and melphalan (Figure 6), we hypothesized

that the inhibition of BLM could increase the sensitivity of cells

to melphalan, notably in melphalan-resistant MM cells, which

would be of therapeutic interest. We explored this possibility by

comparing the sensitivity of XG2 and XG7 cell lines to their

melphalan-resistant counterparts (XG2 MR and XG7 MR) (70).
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FIGURE 4

ML216 selectively induces apoptosis in MMCs. (A) XG19, XG2 and XG1 cell lines were treated for 48 and 96 hours with the indicated
concentrations of ML216. Apoptotic cells were detected as Annexin V+ cells by flow cytometry. Results are the average of 3 independent
experiments. * indicates a significant increase in apoptosis compared to DMSO controls using a Student’s t-test. (B, C) BM cells extracted from 7
MM patients were cultured with recombinant IL-6 and 3, 6 or 10 mM ML216 for 96 hours. Cytotoxicity was assessed by flow cytometry. (B) MM
plasma cells (CD138+) were detected using an anti-CD138 antibody and (C) all CD138- cells were analyzed as non-myeloma cells. Number of
cells in each condition was normalized with respect to the control. P-values indicate the significance of the observed differences after applying
a Wilcoxon test for pairs. NS, not significant. * p-value < 0.05, ** p-value < 0.01.
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FIGURE 5

ML216 effect on cell cycle distribution in HMCLs. XG19, XG2 and XG1 cell lines were treated for 48 and 96 hours with the indicated
concentrations of ML216. BrdU (10 mg/ml) was added during the last 1.5 hours of treatment. Cells were fixed and processed to detect BrdU
incorporation and total DNA (see Materials and Methods for more details). BrdU+ cells were assigned to S-phase. BrdU- cells were assigned to
G0/G1 or G2/M phases based on their DNA content. * indicates a significant difference compared to DMSO treated (control) cells after applying
a Student’s t-test for pairs. Results are the mean of 3 independent experiments. ** p-value < 0.01.
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FIGURE 6

ML216 treatment synergizes with melphalan to inhibit HMCLs proliferation. Dose-response matrixes to measure synergy of ML216 and
Melphalan co-treatment. Synergy scores are shown using a continuous pseudo-color scale ranging from bright-green (=antagonism) to bright-
red (=synergism). XG19, XG2 and XG1 were treated with increasing concentrations of ML216 (0.78125 – 25 mM), and of the alkylating agent
melphalan (0.78125 – 50 mM), for 4 days. Cell viability was assessed using the CellTiter-Glo Luminiscent Cell Viability Assay and was normalized
to untreated conditions. Matrixes show the average of 3-4 independent experiments.
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FIGURE 7

Effect of combination of ML216 and melphalan. (A) XG19 and XG2 cells were treated with ML216 and melphalan as indicated for 96 hours.
Apoptotic cells were detected as Annexin V+ cells by flow cytometry. Results are the average of 3 independent experiments. * indicates a significant
increase in apoptosis compared to DMSO controls using a Student’s t-test. (B) XG19 and XG2 cells were treated for 96 hours with the indicated
concentrations of ML216 and melphalan. BrdU (10 mg/ml) was added during the last 1.5 hours of treatment. Cells were fixed and processed to
detect BrdU incorporation and total DNA (see Materials and Methods for more details). BrdU+ cells were assigned to S-phase. BrdU- cells were
assigned to G0/G1 or G2/M phases based on their DNA content. Asterisks indicate a significant difference compared to DMSO treated (control) cells
after applying a Student’s t-test: * p-value < 0.05, ** p-value < 0.01. Results are the mean of 3 independent experiments. (C) XG19 cells treated as in
(B) were processed to quantify gH2AX intensity by flow cytometry (see Materials and Methods for more details). * indicate a significant difference
compared to DMSO treated (control) cells after applying a Student’s t-test for pairs: p-value < 0.05. (D) XG2 cells were treated with the indicated
doses of ML216 and 1 mM melphalan for 48 hours. Cells were harvested and gH2AX levels were analyzed by western blot. One representative
experiment out of three is shown. The graph shows the quantification of the gH2AX signal (a.u.: arbitrary units) with respect to tubulin, normalized to
the control condition (DMSO) in 3 independent experiments. *** p-value < 0.001.
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Interestingly, ML216 synergized with melphalan to inhibit cell

growth specifically in XG2 and XG7 melphalan-resistant cell

lines (Figures 9A, B). These data indicate that BLM inhibition

could represent a new therapeutic option to overcome resistance

to melphalan in MM cells (Figure 9C). A mutational signature

(named SBS-MM1) linked to exposure to high-dose melphalan
Frontiers in Immunology 14
in MM patients and related to relapse has been described (92–

94). These mutations mostly occur in the late-replicating and

non-coding parts of the genome (92). In addition, another work

reported that TP53 mutation or loss are linked to melphalan

resistance and that inactivation of DDR genes such as ATM,

FANCA, RAD54B, and BRCC3, enhances the response to the
A B
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C

FIGURE 8

BLM depletion sensitizes MM cells to melphalan. XG2 cells were transduced with control lentiviruses (Ctrl) or miRNA against BLM to stably
knock-down its expression (KD BLM). Both cell lines were treated with 1 mM melphalan for 96 hours and samples were collected to analyze
(A) BLM depletion and protein levels of the other RECQ helicases; (B) cell cycle and DDR markers by western blot; (C) PARP and caspases
cleavage as apoptosis markers by western blot; (D) apoptotic cells (Annexin V+) by flow cytometry; (E) cell cycle distribution using BrdU
incorporation and DAPI staining as in Figures 5 and 7. Asterisks indicate a significant difference after applying a Student’s t-test for pairs.
* p-value < 0.05, ** p-value < 0.01. All experiments in this figure were repeated 3 times independently.
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FIGURE 9

ML216 re-sensitizes Melphalan-resistant MM cells to Melphalan. Dose-response matrixes to measure synergy of ML216 and Melphalan co-
treatment. Synergy scores are shown using a continuous pseudo-color scale ranging from dark-green (=antagonism) to dark-red (=synergism).
(A) XG7 parental cells and XG7 MR (Melphalan Resistant) (Melphalan IC50: 0.625 mM and 7.5 mM respectively) were treated for 4 days with the
indicated doses of ML216 and melphalan. Cell viability was assessed using CellTiter-Glo Luminiscent Cell Viability Assay and was normalized
with respect to untreated conditions. Matrixes show the mean of 3-4 independent experiments. (B) Same as in (A) but comparing XG2 parental
and XG2 MR (Melphalan Resistant) (Melphalan IC50: 0.625 mM and 2 mM respectively). Matrixes show the mean of 3 independent experiments.
(C) Treatment of MM cells with melphalan produces DNA damage. Cells that overexpress BLM can cope better with the drug-induced DNA
damage and therefore survive to the treatment, showing a resistant phenotype. On the contrary, BLM inhibition in combination with melphalan
increases DNA damage to levels that tumoral plasma cells cannot efficiently repair, leading to cell cycle arrest and eventually to cell death,
overcoming melphalan-resistance. Figure was created with BioRender.com.
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treatment (95), which argues in favor of the combination of BLM

inhibition with melphalan to increase melphalan effect. We

compared the mutational burden of both XG2 (TP53 mutated)

and XG7 (TP53 wild type) melphalan-resistant cell lines to their

parental counterparts and identified 16 mutated genes

(Supplementary Table S2) common to both melphalan-

resistant cell lines. Four of those genes, TBP (TATA-binding

protein) (96), TRRAP (Transformation/transcription domain-

associated protein) (97), CTBP2 (C-terminal-binding protein 2)

and CTDSP2 (Carboxy-terminal domain RNA polymerase II

polypeptide A small phosphatase 2), play a role in transcription

regulation, either directly or indirectly, which suggests that

resistance to melphalan may be mediated not only by

mutation of genes involved in DDR, but also by altered

regulation of this and other pathways due to changes in

transcription. In addition, TRRAP and CTBP2 also play roles

in DNA repair. On the one hand, TRRAP, a member of the

PIKK family as ATM, has been involved in the regulation of

DDR by mediating DSB repair (98) and we have recently

reported that its mutation is associated with high-risk MM

(99). On the other hand, CTBP2 has roles in diminishing cell

cycle arrest and BRCA-mediated DDR, and in apoptosis

regulation (100). Thus, in future studies, it would be

interesting to further analyze the implications of TRRAP and

CTBP2mutations in the development of resistance to melphalan

in MMCs.
Discussion

During the past decades, the development of new therapies

has significantly prolonged the survival of MM patients.

However, resistance to chemotherapy and relapse remain

frequent causes of death (101). The DNA alkylating agent

melphalan is one of the main anti-myeloma treatments, alone

or in combination with other drugs. Resistance to DNA

damaging agents like melphalan could be caused by

deregulation or mutation of DDR pathways or increased

antioxidant defenses among others (58, 60, 61, 102–106). We

have previously demonstrated that RECQ1, a DNA helicase

important for the response to replication stress, has a role in

cell survival to replication problems and is related to drug

resistance in MM cells (61). Another helicase from the RECQ

family, namely BLM, is a DDR factor necessary for correct HR,

whose mutations are associated with the cancer-prone Bloom’s

syndrome (27). In this study, we present evidence that the DNA

helicase BLM is also associated with MM cell survival and

resistance to DNA damaging chemotherapy. We found that

BLM expression increases along the progression of the disease

and that BLM is differentially expressed among MM patients,

with high BLM expression associated with a bad prognosis

(Figures 1, 2).
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It has been proposed that BLM can act both as a tumor

suppressor and as a proto-oncogene. On the one hand, BLM loss

or mutation leads to increased genetic instability and BS

development, which points to a role as a tumor suppressor.

On the other hand, increased BLM expression has been

associated with multiple types of cancers, suggesting a proto-

oncogenic function [reviewed in (107)]. For example, a recent

study reported a correlation between BLM overexpression and

poor overall survival in lung and gastric cancer patients (108).

Similarly, our data showed that high BLM expression correlates

with worse overall and event free survival in MM patients

(Figure 2), confirming a proto-oncogenic role in MM as well.

High levels of BLM were also found in hematological

malignancies such as myeloid leukemia, lymphoma and

myeloma (62, 109). Furthermore, transcriptomics analysis of

fibroblasts from BS patients identified cell proliferation and

survival genes, as well as immunological pathways, as the

topmost deregulated in this disease (110, 111). Similarly, our

GSEA results showed an increase in the expression of

proliferation-associated genes in MM patients with high level

of BLM expression and bad prognosis (Figure S1).

We took advantage of model MM cell lines derived from

patients to further characterize the role of BLM in MM. A panel

of HMCLs showed different responses to the BLM inhibitor

ML216, with IC50 concentrations ranging from 1.3 mM for the

most sensitive cells to 16.9 mM for the most resistant one.

Intriguingly, sensitivity to ML216 did not correlate with the

levels of expression of any tested RECQ helicase (BLM, RECQ1,

RECQL5, and WRN), the cell lines’ basal DDR activation, their

MM molecular subgroup or mutations in several oncogenes

(Figure 3). Loss of a particular DDR pathway in cancer cells can

make cells more dependent on other pathways. Thus, one

possibility is that deregulation of other molecular factors,

likely involved in DDR and/or cell cycle regulation, could

account for the differential sensitivity to BLM inhibition.

However, BLM has other cellular functions other than DNA

repair (reviewed in [80)], that could also be responsible for the

differences in the response to ML216. For example, in

physiological conditions, BLM is required for fork progression

and stability, resolution of R-loops or ultrafine anaphase bridges,

and acts during replication stress by unwinding unusual DNA

structures. BLM also regulates the correct replication of

telomeric regions and BLM-deficient cells show a slowdown of

replication forks and an increase in G4 at telomeres (52). In

addition, BLM has been reported to facilitate pre-mRNA

synthesis by direct binding with RNA Pol I and DNA

topoisomerase I (82, 112, 113). Thus, inhibiting BLM would

also affect ribosome biogenesis, which is known to be of

particular importance for fast-proliferating cells such as tumor

cells (114). Finally, it has been suggested that BLM would

regulate transcription of a set of genes via its interaction to

their G4 motifs (110). Therefore, given the plethora of molecular

mechanisms in which BLM is involved in the cells, it is likely that
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the different sensitivity to ML216 inhibitor shown by our panel

of MM cell lines would depend not only on each cell line

tolerance to DNA damage, but also to alterations in the other

BLM-regulated processes.

We demonstrated that continuous BLM inhibition induces

cell cycle arrest and eventually leads to apoptosis in HMCLs.

Importantly, this toxicity seems specific to myeloma cells, since

ML216 poorly affected non-myeloma primary cells from

patients (Figure 4B, C). This is likely due to the role of BLM

as a safeguard of genomic stability, making rapidly dividing

tumoral cells more dependent on its activity to cope with DNA

damage and replication-transcription conflicts. This notion

provides a strong rationale to combine BLM inhibition with

DNA damaging agents, in order to overload the cell with DNA

damage while impairing its repair. Indeed, our data show that

ML216 potentiated the effect of melphalan to kill the 3 tested

HMCLs (Figure 6). Double treatment induced PARP and

caspases cleavage, concomitant with a strong cell cycle arrest

and increased cell death, supporting the idea of causing a DNA

damage overload to kill tumor cells (Figure 9C and

Supplementary Figure S5). A recent work has reported a

synergy between ML216 and the PARP inhibitor olaparib with

irradiation to kill NSCLC (non-small cell lung cancer) cells by

inhibiting HR and promoting NHEJ (115). Therefore, the

interest of the combination of ML216 with chemotherapies

currently in clinical use deserves further investigation.

Resistance to drugs remains a major concern in the

therapeutic management of MM. We have previously reported

that BLM expression correlates with sensitivity to the

immunomodulatory agent lenalidomide, a standard-of-care

drug in MM (23). Interestingly, we have found a synergy

between ML216 and lenalidomide in HMCLs (Supplementary

Figure S3B). However, the mechanism of this synergy remains to

be explored, since no significant effect on IMiD targets including

Myc and IRF4 levels was observed upon treatment with ML216

(Supplementary Figure S4C). Melphalan is another standard-of-

care drug used both in patients eligible and non-eligible for

autologous hematopoietic stem cell transplantation, alone or in

combination with other chemotherapeutic agents, respectively

(56, 116, 117). However, patients often acquire mutations in

DDR pathways that result in resistance (58, 60). By using

melphalan-resistant cell models, we showed that inhibition of

BLM may be a good strategy to overcome such resistance

(Figure 9A, B). Similarly, we previously reported that sublethal

concentrations of the inhibitors of Chk1 (AZD7762) and Cdc7-

Dbf4 (XL413), both kinases involved in DNA damage and

replication stress response, overcome resistance to melphalan

in HMCLs (70). Thus, the combination of DDR inhibitors and

DNA damaging agents should be further explored as a

therapeutic option for MM patients with resistance to DNA

damage chemotherapies.

Targeting DDR factors to enhance sensitivity to melphalan

in MM has already been proposed. In particular, treatment with
Frontiers in Immunology 17
bortezomib reduced the levels of Fanconi Anemia (FA) factors

BRCA1/2 and FANCD2, and proved effective to induce DNA

damage and cell death in combination with melphalan (103). FA

is an autosomal recessive disorder characterized by genetic

instability that leads to developmental abnormalities, BM

failure and elevated risk of developing certain types of cancer

like acute myeloid leukemia and squamous cell carcinomas (118,

119). BS and FA disease present some overlapping phenotypes,

like predisposition to cancer and immunodeficiency, and are

both characterized by genetic instability. Although their genetic

origins are different, it has been proposed that the BS complex

(BLM, RMI1, RMI2 and Topoisomerase III-a) and the FA

pathway are related by protein interactions, forming the

BRAFT multiprotein complex (BLM, RPA, FA and

Topoisomerase III-a), which has various DNA-processing

activities (120, 121). In addition, BLM interacts with the

helicase FANCJ (122), the DNA translocase FANCM interacts

with FANCF, RMI1 and Topoisomerase III-a, linking both

complexes (123). Moreover, BLM has been shown to promote

the activation of the FA pathway through FANCD2 in response

to cross-linking agents (124). Thus, it is not surprising that BLM

inhibition also increases the toxicity of melphalan.

The notion to combine DNA damaging agents with drugs

that target DDR pathways is gaining attention as a potential way

to increase anticancer therapy effectiveness. For instance,

inhibitors of RAD51 and WRN sensitize cancer cells to DNA

damaging agents (125, 126). Thus, development of new

inhibitors that target other DDR factors to be used in

combination with current chemotherapeutic drugs becomes an

appealing option to treat cancer more efficiently and confront

drug resistance. BLM, a critical proven factor for genomic

stability maintenance, is therefore an interesting candidate for

combination therapies. Indeed, several experimental and

computational studies have proposed RECQ helicases as

potential targets in a range of different cancers (127–130).

However, till recently only the small molecule ML216 had

been developed to target BLM, which is still poorly

characterized in treating cancer cells. Of note, isaindigotone

and quinazolinone derivatives have been recently reported as

potential new BLM inhibitors. Both inhibit proliferation and

trigger apoptosis and DDR activation in the human colon cancer

cell line HCT116 (131, 132). Also recently, a screen for

antiproliferative drugs in breast cancer identified HJNO, a

tetrandrine derivative which inhibits BLM DNA binding,

unwinding and ATPase activities, diminishing breast cancer

cells proliferation (133). Another study has analyzed

derivatives of ML216 that seem highly specific allosteric

inhibitors of BLM, that could be used to cause highly cytotoxic

BLM-DNA complexes to kill cancer cells (134). In the next years,

further work to develop and characterize new BLM inhibitors

is warranted.

In MM, most patients develop resistance to the existing

therapies, including melphalan. Our data suggest that BLM
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expression can be a good biomarker for MM and that

combination of BLM inhibitors with DNA damaging drugs

could be of therapeutic interest to treat MM patients who have

developed resistance to melphalan. It is important to keep in

mind that chemotherapy drugs used to target tumor cells are also

toxic to other types of healthy cells, leading to toxicity and,

ultimately, the development of secondary cancers in many

patients later in life. Several mechanisms associated with

MMC resistance to genotoxic treatments have been described,

underlining the myeloma endemic heterogeneous landscape

(135). These findings provide several therapeutic strategies to

overcome drug resistance and limit mutagenic effects of

genotoxic agents in MM (135). Exploiting synthetic lethality

between DNA repair inhibitors and DNA-damaging agents

would allow lower concentrations of the latter to be used,

limiting undesirable side effects. The clinical manifestations of

patients with Bloom’s syndrome indicate that BLM activity is

crucial for the maintenance of genetic stability at the organismal

level. However, the toxicity associated with BLM inhibition in

the context of therapeutic treatment, i.e. inhibition that is not

sustained over time for years, is not likely to have such a

dramatic impact on the fitness of cancer patients compared to

patients with BS. Yet, BLM inhibitor’s toxicity needs to be

carefully addressed using in vivo models to assess the benefits

and risks of its use in cancer treatment.
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